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GUST-RESPONSE ANALYSIS OF AN AIRPLANE INCLUDING

WING BENDING lILEXIBILITY1

By John C. Houbolt and Eldon E. Kordes

suMMARY

An analysis is made of the gust response (including
of an airplane having the degrees of freedom of vertical
bending flexibility and basic parameters are established.

bending moment)
motion–and wing
A convenient,

but accurate, numerical solution of the response equations is developed-
which is very well suited for making trend studies. An example treated
shows results which are in very good agreement with the results obtained
by a more precise but more lengthy method.

. The method of determining a gust causing a known response is indi-
cated and a procedure is given for determining the response of ti air-
plane directly from the known response of another airplane by eliminating

-n the co?mnongust condition.

In the
critical in

INTRODUCTION

design of aircraft the condition of gust encounter has become
more and more instances, mainly because of the ever-increasing

flight speeds. Aircraft desiggers have therefore placed greater emphasis-
on obtaining rationalmethods for accurately predicting the stresses that
develop. As a result, the nmber of papers dealing with the prediction
of stresses in an aircraft traversing a vertical gust has significantly
increased. (See, for example, refs. 1 to 9.) Many of the papers have
treated the airplane as a rigid body and in so doing have dealt with
either the degree of freedom of vertical motion alone (refs. 5 to 8) or
with the degrees of freedom of vertical motion and pitch (refs. 7 and 9).

. %?his paper is a revision and extension of a paper entitled “The
Determination of the Response Due to Gusts of One Airplane From the Known
Response of Another Airplane” published as TN No. Structures 40, British

A R.A.E., June 1949, which was completed by Mr. Houbolt during-a temporary
tour of duty with the Royal Aircraft Establishment. Since the present
paper is complete in itself, no further reference to the earlier paper
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is necessary.
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Of greater concern in the consideration of gukt penetration, however, is
the influence that wing flexibility has on structural response. This
concerm has-two main aspects: (1) that including wing flexibility may
lead to the calculation ofi-higherstresses than would be obtained by
rigid-body treatment of the problem and (2) that wing flexibility may
introduce some error when the airplane is used as an instrument fur
measuring gust intensity. Thusj there are also many recent papers which
treat the airplane as an elastic bcdy. In most of these papers the
approach ueed involves the development of the structural response in
terms of the natural modes of vibration of the airplane (refs. 2 to 4).
Others used a more unusual approach, as for example, reference 1, which
deals with the simultaneous treatment of the conditions of equilibrium
between aerodynamic forces and structural deformation at a number of__
points along the wing span. Whatever the approach, however, the main
disadvantage of these elastic-body analyses is that they are not very
well suited for making trend studies without excessive computation time.

In the present paper, the case of the gust ~enetration of an air-
plane having the degrees of freedom of vertical motion and wing bending
is considered, Wing bending was chosen because designers have-expressed
greater concern about the influence of this flexibility on gust response
than they have about other types of flexibility. The paper has the
objective of trying to establish some of the basic parameters that are
involved when wing bending flexibility is included and of developing a
method of solution which is fairly well suited for trend studies without
excessive computation time. Such a procedure would be useful in evalu-
ation studies which are intended, for examplej to evaluate the effect of
such factors as forward speed, spanwise mass distribution, gust length,
and gust shape.

The equations for response (including accelerations, displacements,
and bending moments) are derived and the basic parameters outlined. An
easy numerical solution for the response which is readily handled either
by manual or machine methods is then given. The inverse of”the response
problem is considered briefly; that -is,the methai of determining the
gust causing a given response is indicated. Finally, on this basis, a
procedure is outlined whereby the response of one airplane may be found
directly from the known response of another airplane without the
necessity of establishing the gust causing the known response.
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slope of lift curve

deflection coefficient

F-

f& nth mode, function of time alone
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A

b

c

co

E

f(s)

F

g

H

I

K~

Lv

Lg

m

‘j

Mco

Mn

h
●

P

x S,a

s

aspect ratio of wing

spag of wing

chofi of wing

chord of wing midspan

Youngts mdulus of elasticity

nondimensional gust force, l’s %(s - a)da

external applied

acceleration due

distance to gust

do u

load per unit span

to gravity

peak, chords

bending moment

nondimensional

of inertia

bending-moment factor
(
M~ = K~ ; @VMco

)

aerodynamic lift per unit span of wing due to vertical motion
of the airplane

aerodynamic lift per unit span of wing due to gust

mass per unit span of wing

net incremental bending moment at wing station j

-

moment of wing area about spanwise station under consideration

generalized mass of nth mode

incremental number of g acceleration

load intensity per unit spanwise length

distance traveled, ~ t, half-chonis

wing area

—.—

——
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—
-----
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time, zero at beginning of.gust penetration.. ..—. ,-. ---

vertical velocity of gust
.....

N

maximum vertical velocity of gust.:
.+

forward velocity of flight
—

——

total weight--ofairplane .—.

distance along wing measured from airplane center line
..-

deflection of elastic axis of

deflection of elastic axis in
unit-tip deflection

response coefficient based on

-..-
wing, positive upward .— .-

—
nth mcde, given in terms of a

—

%+%

second derivative of Z. with respect to s
.-. .,

second derivative of Z1 with res~ect to s .
K

bending-moment resyonse factor, ratio of bending moment : —
obtained for airplane considered flexible to bending moment
obtained for airplane considered rigid

distance interval, half-chor’dS

%LCoreduced-frequencyparameter,
T

%
nondimensional relative-densityparameter, —

apcoS

‘%nondimensional bending-mcmnt parameter, —
a~coMcO

—

●

mass density of air ..

function which denotes growth of l~ft Oririgid wing entering
— 8.

a sharp-edge gust (Ktissnerfunction)
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% natural circular frequency of vibration of nth mode

1 -6 function which denotes growth of lift on an airfoil following
a sudden change in angle of attack (Wagner function)

e 1-0=

Subscripts:

J spanwise station

n natural modes of vibration

m number of distance intervals traveled

Notation:

--

II
column matrix

. [1 square matrix

. Dots are used to denote derivatives with respect to time: primes
denote derivatives with respect to s or

ANALYSIS

Equations for Structural

.-
a. -

Response

Equations of motion.- Consider an airplane flying horizontally into
vertical gusts, and suppose that it is desired to include wing bending
flexibility in determining the stresses induced by these gusts. The
problem is actually one of determining the response of an elastic wing
subject to dynamic forces. For dynamic forces of intensity F per unit
length, the differential equation for wing bending is, if structural
damping is neglected,

●

_E#w_82
-&+F (1)

ay2 ay2.

where w is the deflection of the elastic axis referred to a fixed
reference plane. The task of detemnining the deflection that results
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from the applied forces F may be handled conveniently by expressing
the deflection in terms of the natural free-free vibration males otthe

.

wing. With regard to the flight of’an airplane through gusts, exami-
matlon of a number of acceleration and strain records that--havebeen ..

taken in normal flight with several differeritaircraft shows that the
response to gusts is composed primarily of a rigid-body vertical trans-
lation and fundamental-bending-mcdeexcitation of the wing. Thus, the
assumption is made in the present analysis that the response may be given
with fair accuracy by considering only these two degrees of freedom.
This assumption is probably invalid when the airplane is flying near the
flutter speed, for then a large amount of coupled bending-torsion dis-
placement may occur. (See ref. 3.)

The wing deflection is thus assumed to

w = aO + alwl

where W1 is the deflection given In terms

b given by the equation .

(2)

of a unit tip deflection ‘
—
—.

along the elastic axis of the wing for the fundamental rode, and a.

and al are functions of time alone. In this form

free-baiy vertical displacement of the airplane (in
placement of the

deflection which
in the following

ncdal points) and al is the part

is associated with the fundamental
sketch:

denotes the
*–

a.

this case the dis-
of the wing-tip .

mode, as illustkted .-

I
I

alwl(Y)

k 1 a.
Reference plane—— .— —1— — — —

t-

Y
—

The use of symmetrical mciiesimplies that only the symmetrical gust is
to be considered hereinafter.

.—

Substitution of

al

equation (2) into equation (1) yields

a2 a2wl.
~’1~ +O+%)+F (3)

.
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.

. From the following relation which expresses the condition for natural
fundamental-mode vibration

equation (3) may be written

al% %71 = )-m(HO + &lwl + F (4)

where ~ is a natural circular frequency of vibration of the funda-

mental mode. If this equation is integrated over the wing span and use
is made uf the following known orthogonality condition of the free-body
and fundamental reties:

L
b/2

mwl dy = O.
b/2

.
the following equation results:

f

b/2
M&O z F dy

-b/2

(5)
—

(6) ‘--““—

where M. is the airplane mass. Now, if equation (4) is first multi- -.
plied through by WI and then integrated over the wing span and use is

made of equatiti (~), the following equation is obtained:

(7) —.

where Ml is the generalized mass for the fundamental mode, that is,
. b/2

—

Ml =
1

mwl%iy. Equations (6) and (7) represent, respectively,
-b/2

9
the equations for free-body motion and fundamental wing bending and can
be solved if the forces F are known.

—
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For the
force F is

the vertical

present case of
composed of two

the airplane flying through a
parts: a patidesignated by

NACATN 2763

gust, the a-
% due-to . =

motion of the airplane (including both rigid-body and —
bending displacements) and a p&% Lg resulting directly from the gust ?’
(this latter part is the gust-force which would develop on the wing
considered rigid and restrained against vertical motion). These two

*

parts are defined (see refs. 1 and 3) h the equation of F as follows:
—

t

[[ 1 J
t

F=L@Lg=-~PCV Gl- O(t - T) dT +-: Pcv - h$(t - 7)dT (8)
A n —

where 1 - o(t)
function) which
change in angle
is given by the

[1-

and ~(t) is a

vu -u

is a function (cormnonlyreferred to as the Wagner
denotes the growth of’lift on a wing following a sudden
of attack and for two-dimensional incompressible flow
approximateion

——.—

-0:O$t -o.E&
dt~A=m=1 - 0.165e - 0.335e (9) -.

which denotes the
edge gust and for
approximation

function (commonly referred to as the K&sner function)
growth of lift on a rigid wing p~et~ting a sharp-

-,

two-dimensional incompressible flow is_given,by the __
=

[(]
-o.2qt -2:t

$tA-=1-0.5e - 0.se (lo)

An additional term which involves the apparent air mass should be included
in equation (8); this mass term is inertial---incharacter and may be
included ‘Withthe structural mass (see ref. 1) although it is usually
small in comparison. The lift-curve slope -a may be chosen so as to
include approximate over-all corrections,for aspec: ratio ad comP.ress3-
bility effects.

If w as given by equating. is substituted into equation (8)
and the resulting equation for F is substituted into equations (6)
and (7), the following two equations are obtained for the case of a
uniform spanwise gust:

t t
‘o 1( ‘1 ,.—Eo=- )[“%+-pi 1- ~(t”- T]dT+

J’
iv(t - T)dT (11)

a@?S o 0

—

—

..-..—
=
—.

._..-

.-

8
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9

●

where (because of mode symmetry)

J’
b/2

S2= C dy
o

b/2

1S1=2 Cwl dy
o

b/2

J
S2=2 Cwl%y

o

Equations (11)
form by introducing

d

and (12) may be put in convenient
the notation

=:%2‘n Uc

A

nondimensional

where co is the midspan chord of the wing and U is the maximum

vertical velocity of the gust. With this notation, equations (11)

. and (12) may be written
#.

—

(12) —

(13)

(14)

(15)
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where

,0=2?!L
apcoS

S2
‘2=F

●

b

(17)

(18)

and a prime denotes a derivative with respect to u. Equations (16)
and (17) are the basic response equations Q the present analysis. The
five parameters ~ppearing in these equation~ and given by equations (18)
depend upon the forward velocity, air derisity,lift=curve slope, and the
airplane physical characteristics: the wing plan fore, wing bending
stiffness, and wing mass distribution. Experience has shown that vari- .
ations in the physical characteristics cause significant variations in
the first three of the five parameters, while the last two vary only to
a minor extent. The first three are--thereforethe most basic param-
eters; p. is a relative-density factor, frequently referred to as a

mass parameter, and is associated with vertical free-body motion of the
airplane; pl, similar to I.Lo,is the mass parameter associated with the

fundamental mode; and h by its nature may be interpreted as a reduced-
frequency parameter similar to that used in flutter analysis.

-.

-.

.
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It is significant to note that,
ities Zo) Zl, and u appearing in

if any one of the three quanti-
equations (16) and (17) is specified .—

or known, the other two may be determined.
..—

Thus, if the gust is known, ‘“
the response may be determined, or converselY~ if either zo or zl is

known, the gust may be determined.
.-

A useful equation relating Z. and —

Z1 may be found by combining equations (16) and (17) so as to eliminate

the integral dealing with the gust. The result is the equation

which is used subsequently.

It may also be of interest to note that pozo”

frequently used acceleration ratio. From equations
rigid-body component of the vertical acceleration may be written -

in effect defines a

(12) and (11), the

or, when expressed in terms of the incremental number of g~s,

An acceleration

velocity is now

Al-l
The ratio —

Ails‘
.

s

factor Ans based on quasi-steady flow and peak gust

introduced according to the definition

Answ = ; PSV2{

is thus found to be

.

—
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Where the gust shape is represented analytically and the unsteady:
lift functions are taken in the form given by equations (9) and (10),

solution of the response”equatid~s may be made by the Laplace transform
method, but such a solution is more laborious than desired. Therefore,
a numerical procedure which permits a rather.rapid solutit of the equa-
tions has been devised and is presented in a“subsequent section. It may
be well-”tomention, ‘however,that the respoiiseequations are suitable—-
for solution by some of the analog computing”machines.

.

—..—

—. .

Bending stresses.- The bending moment and, hence, the bending
stresses that develop in the wing due to the--gustmay be found as

=.-—

follows: The right--handside of equation (1) defines the loading on ‘“
—

the wing; suppose this loading is noted by .p, then

P = -m; + F

By use of equations (2) and (8), and thenotation:of equations (14] ‘- ‘~
and (1~), this equation becomes

[

s
; pcv U’!f(S - a)du

o
..

..-——

1-

-
. .. _=.

—

If the moment of this loading is taken about a given wing station,
say yj, the following equation for incremental bending moment at that

station would result:

.
.—

—

. 4VU

( , )-ap~~s(Mcoz&’ +~c,z:’)~- i(s-.jdu+Mwzo’’+Mm 21”-r

.-

—

.

(20) ‘ ‘ /
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● where the MIS bearing double subscripts are first moments defined as
follows:

a

‘mo=J’’2m(y-yj)dy~~=J~2c(y-yj)dy

(a)

and y
J

is the station being considered. Division through of equa-

tion (20) by the quantity ~PVUMCo gives the following equation which

is considered to define a bending-moment factor KS. at wing station y
J

% ( %1 ) J(
s Mcl

.—
‘o” +& ‘1” - 2 0 ‘o

“+G )[‘l” 1 - 0(s -
= apcoMco 1u)da +

J’
s

%$(S- u)du (22)

o

The factor ~ VuMc2P o may be regarded as the maximum aerodynamic bending

moment that would be developed by the gust under conditions of quasi-.
steady flow and with the wing considered rigid and restrained against
vertical motion at the root. The bending-moment factor Kj ma, thus

be seen to be the ratio of the actual dynamic bending moment that occursr
to this quasi-steady bending moment and therefore may be regarded as a
response or an alleviation factor.

..A

..-—

.—

.

*
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A more
obtained by

quantities

convenient form for the bending-moment factor may be
.

solving equations (16) and (17) simultaneously for the
s

~L 1

s
Zo” 1 - 0(s - u) da and ~L 1zI° 1 - @(s - a) da and

a

substituting these values into equation (22). With these operations the
following equation results:

.-

—

(
r3rl - r2

)(

rl - r3

)

rl - r3 ~
= Po - ~. 2.” + P1 - ~1 Zl” + Plhazl .—

rl2 -r2, r12 - r2 ‘- r12 - r2

(23)

where

70 =
%

w$co

b

(2!)

It is seen that, when bending moments are being determined, three addi-
tional basic parameters (eqs. (24)) appear.

—
The similarity of ~.

and ~1 to P. and VI is t-obe noted; first moments of masses and .

areas are involved rather than masses and areas.

Reduction trrigid case.- It may be of interest to show the reduc-
tion of the response equation to the case of the airplane considered as

.

—
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● a rigid body, Thus, if Z1 is equated to zero in equation (16), the

following

r

equation for rigid-body response is obtained:

If Z~” is set equal to zero in

equation (25), the following equation
for the rigid-body case is o’btained

where ~oll

body.

Kj = (PO -

“iId”‘~
s

+V(S- g)da (25)

—

.—

-.

equation (22) and use is made of .
for the bending-moment parameter -

w))20” (26)

is theacceleration of the airplane considered as a rigid
-. —

Matrix Solution of Response Equations

In this section a rather simple m.unericalsolution of the response
equations (16) and (17) is presented. The procedure is readily adapted
to either manual or punch-cad machine calculations.

The derivation proceeds on the basis that the response due to a
given gust is to be determined. The airplane, just before gust pene-
tration, is considered to be in level flight and hence has the initial
conditions that the vertical displacement and vertical velocity are both
zero. These conditions mean that ZO, Zl, Zor, and Zlr are all zero

at S=o. The gust force can be shown to start from zero and, there-
fore, the additional initial conditions can be established that ZO”

and Zl” are also zero at S=o. By the numerical procedure; solution

for the response at successive values of s of increment e will be
made and, f& the case being considered, it is found
solve directly for the accelerations rather than the

In order to make the presentation more compact,.
notation is introduced:

.. ——
—

-—
—

—
—

advantageous to
displacements.

the following

1
.-

(27a)
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.

—

(27%) a—

With this notation, equation (16) would appi%r simply as
.

(28) ‘“

In accordance with numerical-evaluationprticeduresjthe interval
between O and s is divided into a number of equal stations of

.—
.- .—

interval 6 so that s = me.
.-

The product of (a + rl13)-d e(~ - a) ‘“_ ___

is assumed formed at each station and, with the use of the trapezoidal .

method for determining areas, the unsteady-lift integral in equation (28) “- ‘“
may be written in terms of values of a and P at successive stat-ions —.

as follows, where”the mth station corresponds to the value s: ._

(29)

in which (3., 61, . . . are, respectively, the values of the

1 -0 functional s=O, s=c,...
(a. and PO do not appear

)because of the initial conditions . With this equation, equation (28)
may be wcitten at various values of s or at successivevalues of m;
the result, for example, for m = 1 is

peal = - Ceoal - ~rleo~l- +–fl ._

b

. .. ~

—.—

-.

— --

.

and for m = 2,
.

Voa, =
(‘G 2elal+ e ao 2)

- erl(201B1 + e#p) + ‘2
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m

where fl

equations

and f2 are the values of

thus formed may be ccsubined

the gust-force integral

in the following matrix

at B=$mld

equation:

s = 2e. The

)10 + 90E

fl

fs

f3

.

.

.

Ym

PI

!32

P3

.

.

.

Pa

..+ eo6

2e1e

?B*6

.

.

.

?e
IU-16

al

C9

a3

.

.

.

a
m

RLw

2r101G r1f306

=%?% 2rlele
( 3oa)i-

. .

. .

. .

. .

. .

. .

.

.

.

f?e
IW2G...

which JMLy be abbreviated

[’0+ + [!WI = Ifl
(30b)

The simplicity of the matrices A and B, and all square matrices to follow, is tIJ be ~Ot~;

the matrices are triangular and all elements in one column are merely the elements in t%
urevious column movd down one rev. Thus, only the elements in the first columns have to be

%wn to del’inecompletely the matrices. “ -

Now instead of considering directly the second respmme equation, equation (17), it Is

expedient to consider equation (19) which i.srepeated here for convenient reference

I
1

1,
1,



According to the derivation presented in the appendix, the value of ~ at s = DE may be

approximated in terms of the past-history value Of zI° by the following equation:

(31)

used to replace Z1 in equation

to the Integral in equation (28),
involve only the UrknOWIW a and

equation:

19) and the unsteady-lift integral is manipulated similarly

equations are obtained for successive values of m which

P. The results may be cczzbined in the folloving matrix

which msy be written

[cl Id= ~olal

11; II

. , .

P
co

(*)

.
I h II I
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9 The square matrix C is seen to be similar to the other square
matrices in that it is triangular with all the elements in one
column made up of the elements in the previous column moved down one

. row.

An equation in lj31 alone is obtained by substituting Jai from
—

this equation into equation (30) to yield

{ }
&[AI CC]+ EBI

. .

---.

Pi =[D] @l=lfl (33)

which is the basic response equation relating 13(that is Zl”) to the

gust force. This equation represents a system of linear simultaneous
equations where’the order of the matrix is arbitrary; that is, the equa-
tions may be written up to any desired value of s = iu~. The solution
for response can therefore be carried on as far as desired. Fortunately,

—,

the equations are of such a nature that simultaneous solution is not .-.
.

required. As mentioned, each of the matrices [A], [~, and [c] is ---

triangular with all elements O above the main diagonal smd with all
t elements

diagonal

elements

diagonal

the main

on the main diagonal of each matrix equal;‘therefore; the main

elements of [D] will also all have the same value and the

above this diagonal will be O. If each element on the main

of [D] is denoted by dl and D1 is the matrix D with “-–
[1

diagonal elements replaced by O~s, then

With this equation, equation (33) may be written

(34)

.. .. . . .. .. —
. . . .
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Expanded, this equation has the form

1=—
dl

f~

‘2

f3

f4

5

.

.

.

1-q

i

‘2°”

d3 d2 O

d~
‘3 ‘2 0

‘5 ‘4 ‘3 ‘2 0

1
● *** ●. . . . .
● ..* ●
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.

(35)

●

✎

☛

.

It can be seen that a step-by-step solution for the successive values
.

—
of P may now be made; that is, ‘~1 is solved for first then, with ~1

established, @2 is solved for, and so on as far as is desired. With

the value of Ipl thus established, solution for la! may now be made

directly from equations (32). Values of the displacements Z. and Z1

my be obtained directly from a and P; Z1 may be obtained frcm equa-

tion (31); and Z. may be obtained from this same equation with ~

replaced by a.

Some mention.should be made with regard to the selection of the time
interval e. A rough guide to use in selecting e can be obtained by
considering k, which appears as the characteristic frequency in most ,
resyonse calculations. The period,based on this frequency would be

Ts = ~. Experience has shown that a time interval in the neighborhood

of 1/12 of this period yields very good resultE (in general less than
1 percent error); accordingly, a reasonable guide in choosing c would

be the equation e * ~. Some convenient value near that given by this
2A

equation should be satisfactory; in general, it will be found that E
may be- -1 or greater.

The procedure thus outlined provides a rather rapid evaluation of
the response due to a prescribed gust. With the response thus evaluated
the bending moment at any value of s or the complete time history of

._
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* bending moment maybe found by application of equation (23). It should
be evident that, if respdnse values for either Zo” or zl” are tio~,

. the gust causing this response can be found by suitable manipulation of
equations (30) and (32). Thus, if Zo” is known, @ in equations (30b)

and (32b) may be eliminated to give the equation

{
[A] + VOIB][CJ-} 14 = Id

-..—
—

Direct substitution of ZO” in this equation allows Ifl to be deter-

mined. In most practical cases the second term in equation (30b) con-
tributes only a small smount and may be dropped with little resulting
error in the gust force. The equation for if! is then simply

[A]lal = ~fl

Determination of Response of One Airplane From

‘ Known Response of Another Airplane

In general, a given gust condition produces different responses
either for two different airplanes or for the same airplane with dif-
ferent loading conditions or forward velocity. It would be expected,
however, that the response of the two airplanes could be correlated
through the ccmmon gust condition. This correlation may be demonstrated
quite easily by means of the equations given in the preceding section.
The case to be treated is as follows: The time history of bending —

moment due to a gust is assumed to have been measured in one airplane
and it is desired to calculate directly fram this time history what the
bending moment due t.othe same gust would have been in another airplane.
Although the derivation is presented in terms of bending moment, a
similar derivation could be made in terms of either accelerations or
displacements. — —

If use is made of equation (31) to write the successive values of.
the displacement Z1 in terms of the accelerations,’the bending-moment

factor, equation (23), may be written in terms of the accelerations alone
r and the following matrix equation for K may be formulated:

—
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where

K1

K2

K3

.

.

●

Km

al

az

‘3

.

.

.

%

~

6

1

2

.

.

●

m-

d,= ‘L;3- ‘2
rl - r2

e =

h=
rl2 - r2

&
6

1

.

●

.

1.

~
6

.

.

.

. .

PO - l-lo

L

With the use of equations (32) this equation may be written

Id = [E]IP

E-J=

-.

&H + 4’1 + h~2bl

._

-- —.=

.

.

—

(36b)

—-. -
/

(37)
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● in which [I] la the identity matrix and

.

[G] =

2 1*

.

.

.

m- 1

—

.0

. .

. .

.*,
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Substitution of the value of ~ as obtained from equations (36) into
equation (33) gives the following relation between the gust forces and
the bending-moment parameter:

Ifl = [D]EE]-ll~l (38)

The gust-force matrix Ifl (see eq. (27%)) may be expressed in

terms of the gust velocity by the following process: It is assued that
the initial vertical velocity of the gust is zero and that successive
values of gust velocity of increment e are designated bY ul~ U2)

‘3” “ “ “
First-order difference equations are used to approximate the

slope of the gust velocity, so that, in general,

Utm . ‘%+1 - %-1
26

If this equation is used and the integral equation (27b) is handled by
the trapezoidal integration method similar to that used for equation (29),
the gust force may be written in terms of the successive values of gust
gradient so as to form the following matrix equation:

——

.-
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qk-’ifp’!j-ifl’lfz’ll
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—

,

(39)

—

.— —

where ~1) $2) .*.3● . ●
are successive-values of tire~ function.

Substitution of this

of ~
uII in terms of

equation into equation (38) allows for the solution
-.

the parameter K as..

I~ =--[$]-l[D][E]-lI~l (40)

.

where -[~] is the

flying through the
velocity for equal

square matrix in equation (39). Different airplanes

same gust will experiericethe same vertical gust
—

●

absolute distances of gust penetrathn; that is,

(Vt) = (Vt)
airplane 1 airplane 2

From equation (14), then, the following conditions must prevail:

(SCJ1= (SCO)2

--.

(41)

where the subscripts‘1and 2 denote airplane
Satisfaction of the latter condition insures
given by equation (40) would be the sae””for—

1 and 2, respectively.
that the gust velocity as
the two airplanes being

.
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●

yield the result
compared. This ccmmon gust condition may therefore be eliminated to

([~]-l~D][E]-lIKI)l = (LV]-l[D]E]-11KI)2

If it is assumed that K for airplane 1 is known, then K
plane 2 may be written

IK12 = [[E][D]-’ [Vj2[[&1[D1 [E]-’lKjl

where again the time interval chosen for the two airplanes
relation (41). Thus, if the bending mnent due to a given

—

-.

for air-
—

(42)

must satisfy
gust sequence

is known for one airplane, the bending moment that would de~elop ti-
another airplane encountering the same gust sequence can be determined
from this known bending moment by the use of equation (42). If the mid-
chords of the two airplanes are equal, the time interval may be taken

. equal sad equation (42) reduces to

.
(43)

.—
SUMMARY OF CALCULATION PROCEDURE

As a convenience, a summary of the basic steps necessary for calcu-
lating the response of an airplane to a gust is given as follows: —.

For accelerations and displacements:

(1) With the use of the fundamental m@.e, wing plan form, and mass
distribution, calculate the quantities Vo$ Vl, k, rl, and r2 as

given by equations (18).

(2) Choose the time interval’ ~. A cpnveni.erlt.rule Of th~b is
.

‘U A but for most cases
‘- 2L)

c = 1 sh”ouldgive satisfacto~ results.

*
(3) Dete~ne values of the unsteady-lift function e = 1-0 at

successive multiple intervals of e. (See fig. 1.) Also determine
corresponding values of the gust-force integral f(s), equation (27%).
As an aid, curves for f(s) are presented in figure 1 for the sharp-edge

—
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gust and in figure 2 for various-length sine gusts, sine2 gusts, and
triangular gusts. (The curves in fig. 1 have been obtained from
eqs. (9) and (10). These approximations, although rather accurate for
the lower values ofl s, are

cross and are known to have

(4) Fran the following

Al = MO + Geo

~ . 2eem-1

Bl
= ‘leeo

~ . 2rlcem-1

noted to cross; actually, they should not

the same asymptotic approach to unity.)

definitions:

cm=(nl-1)~6 ()%2 + 2:- rl ‘em-l

set up the following matrices:

1-

Al

A2 Al

[1A =A
3 ‘2 ‘1

IA4 ‘3 ‘2 ‘1

1
. . . ,,.*. ● ,. . . ..

(m> 1)

(m > 1)

.

—

.-.

(m > 1)

.—

.—
.

.
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Then calculate the

[B]

matrix

I
B1

B2

= B3

B4

.

.

r

1
c1

C2

= C3

C4

●

.

.

B2

B3

.
●

.

B2

.
●

✎

● ✎

✎ ✎

.0

c1

C2

C3

.
●

✎

C2

.

.

.

. .

. .

.0

[D] = LPO c-d [cl + rid

(5) Solve for the values of @ (which equals Zl”) from equa-

tion (33), by the method outlined following equation (33). (See
eq. (34).) The values of Z1 and a

(
which equals Zo”) can then be

calculated from equations (31) and (32).

For bending moment:

(6) In order to ccznputebending moment, determine r3, ~0, and ~
1

as given by equations (24), where ~0, ~1, Mco, and Mcl in these

equations depend on the particular wing station being considered and are
given by equations (21).
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(7) Determine
values of response

bending
already

NACA TN 2763 _. .

moment by use of-equation (23) with the v

established. ThiQ equation may be applied
directly to any desired time value. Maximum bending moment
occurs very close to the time when Z1 is a-maximum.

E.xAMmEs

usually
.

Example A.- In order to provide an illustration and give an idea
of the accuracy of the present analysis, the response to a sharp-edge
gust of the two-engine-airplaneexample considered in reference 1 was
determined. The weight distribution over the semispan, the wing-chord
distribution, and the fundamental bending mcde are shown in figures 3,
4, and~. The frequency and deflection of the fundamental mode were
calculated by the method given in reference 10. The solution is made
for a forward velocity of 210 miles per hour and a gust velocity of
10 feet per second.

The lift-curve slope used in reference 1 was 5.41; to be consistent,
the same value was used here. I?urthermore,the unsteady-lift function
used for a change in angle of attack in the example presented in refer-
ence 1 was given by the equation

(1 - 4))A=6= ~ - ().36~e-0*381s

—

-.

.—

.“

.

rather than by equation (9). Thus, this equation was also used here.
The gust unsteady-lift function used was that given by equation (10).

The various physical constants and the basic response and bending-
moment parameters are given in table 1; the values of the unsteady-lift
function and the values of the gust force are listed in table 2. The

matrices [A], [B], and [c] used in the solution are given in table 3.

The solution for responseis shown in figure 6(a) where the deflec-
tion coefficients a. and al in inches are plotted against distance

traveled in half-chords. ‘Thecorresponding deflection quantities for
the example given in reference 1 were determined and~ for comparison,
are also shown in the figure. A similar ccunparisonis made in fig-
ure,6(b) for bending stresses at the fuselage and engine stations,
stations O and 1 from reference 1. The agreement is seen to be good.

Example B.- A second example is included in c@er to illustrate one *

rneaneby which the @th@ may be used to evaluate the influence of bending
flexibility upon the response to a gust. The physical characteristics for

—

the airplane considered in this example are listed also in table 1} and
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. equation (9) is used for the function 1 - 0 instead of the values
given in table 2. Maximum values of the bending moment that develops
at the fuselage station during flights through sine gusts of various

. lengths have been determined, both for the airplane considered flexible
and for the airplane considered rigid. The results are shown in fig-
ure 7(a) where maximum values of the bending-moment parameter K are
plotted against gust-gradient distance H. The difference between the
two curves represents the increase in bending moment due to effects of
wing bending flexibility. By taking the ratio of K for the flextble
case to K for the rigid case, a type of dynamic response factor is
formulated which gives a direct measure of the influence of wing flexi-
bility. This ratio is designated 7M and is shown in figure 7(b). AS

an exsmple of the significance of this plot, the value of 7M = 1.16

at H = 5 means that flexibility results in a 16-percent dynamic over-
shoot in the stress from the value that would be obtained at H = ~ on
the basis of a rigid-bcdy analysis. It may be seen also that the value
of TM is approximately unity for values of H = 10 and greater; there-

fore, in this range of gust-gradient distances a rigid-body treatment
would be sufficient for this airplane.

.—

DISCUSSION

The derivation presented herein M intended to provide a convenient
engineering methcxifor calculating the response of an airplsme to a gust
where wing bending flexibility is included. The method is believed to be
well-suited for ~ing trend studies which evaluate, for example, the
effect on response of such factor8 as mass distribution, speed, and
altitude. Although the unsteady-lift functions for two-dimensional
unsteady flow are presented, the methcd is general enough so that the
unsteady-lift functions for finite aspect ratio, for subsonic compress-
ible flow, and for supersonic flow may be used as well. (See refs. 7
and 11 to la.)

Since the numerical methal is based on an integration procedure, it
possesses the desirable feature that a fairly large time interval may be
used and good accuracy still obtained. As an accuracy test, solutions of
equatione (16) and (17) were made for several cases by the exact Laplace
transfozzumethml as well as by the numerical process, in which process
the time interval was selected according to the rule of thumb suggested,
When the results were plotted to three figures, the difference between
the two solutions was barely discernible.

.
Additional bending mcdes could be included in the analysis but this

—

refinement is really not warr~ted. Some calculations made with addi-
tional modes gave results which differed only slightly from the results
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obtained when only the
of results obtained in
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fundamental mode was used. The god agreement .

example A with the results obtained by the more -—
precise methai given in reference 1 also illustrates this point.
Furthermore, if additional degrees of--freedomare to be used, it would
appear more important to include wing torsi6n and airplane pitch. The
extent-to.whichtorsion influences the resulis is probably governed most
by the nearness to the flutter speed. The j.mportanceof airplane pitch
is probably governed most by the gust length; some investigations dealing
with Titch have indicated that except for very’light wing loadings the
pitch of the airplane does not influence the results appreciably until
gust lengths of from 20 to 30 chords or lar~er are involved. Thus, the

.-
.-

present &lysis, although limited to the d~grees of’freedom of vertical “-””‘--””‘=
motion and wing bending, should probably be_sufficiently satisfactory
for speeds near th~ cruising speed and for &st-gradient distances up to
approximately 10 chords.

The analysis may be useful in assessing the significance of wing
flexibility in the technique o~measuring gust intensity by means of ah
airplane. In this technique gust severity is usually measured by means
of an acceleratneterplaced at the center line of the airplane.

,-
In order

to obtain a rough idea of whether flexibility may have some effect on
this measurement, calculations”for the maximum accelerations at the
center line and for the maximum acceleration at the ndal points (the
true center-of-gravityacceleration) may be made for various assumed
gust lengths. A comparison of these computed niaxiiimacceleration values
should give same idea as to the extent tcrwhich wing flexibility may
alter the measurement-sh-actual flight.

CONCLUDING REMARKS

The analysis presented herein for the response of–an airplane to a
gust should provide a useful means for evaluating the effects of wing
flexibility. A convenient, but accurate, nfier~cal solution of the
response equations is developed which is well-suited for trend studies
such as the evaluation of the effects of mass distribution, speed,

— .-

altitude, and similar factors.

As indicate&by an example, the methcdgives good agreementiwith
the results of the more precise but more lengthy recurrence matrix
method of NACA Rep. 1010.

The method permits the evaluation of a gust causing a known response.
A procedure is given wherein the known gust response of one airplane iiay .=

.-

.-

.-:.
-L

—

. .

—

—

.—

.

-—

——

—

-.

.—

.——

—

.

a :_



NACATN 2763 31

● be used directly to determine what the response’-wouldbe for another
airplane flying through the same gust condition.

.

Langley Aeronautical Laboratory,
National Advisory Ccmmittee for Aeronautics,

Langley Field, Vs., May 21, 1952.
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APPENDIX

DERIVATION OF EQUATION RELATING

PREVIWS SUCCESSIVE VALUES OF

DISPLACEMENT TO

ACCELERATION

In this appendix, a derivation is given of equation (31) which gives
the value of displacement in terms of successive past-history values of
acceleration. Suppose that the second deri~ative (acceleration) of a“
function is approximated by a succession of straight-line segments as
shown in the following sketch:

.—

z“

-G +

m- lm

where the segments cover equal intervals e of the abscissa s and the __
initial condition that Zo” = O is assumed to L3PPLY. If a dummy origin

is now considered at the station m - 1, the segment between 6ta-
tions ,m - 1 and m may be represented by the equation

2’1= z“ ‘“m - “’m-1 ~
m-1 + E

Two successive integrations give the relat~pns for Zfm and ~ as
follows:

~! = Z!’ ‘“m - “’m-1 S2
m-is +

+ z~
2E m-1

2 Z“m
z = ~+

- Z“m-l ~3 + Z?m-ls + z

“’m-1 2 6C m-1

*

.

—
,.

.——

--.

.

-—

.

.-—.—

..—

.——.—

. —
—
—
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. where the constants of

for the interval) have

integration ztm-l and Zm-l (initial conditions

been introduced. If s is set equal to c in
. these two equations, the following

(
Zlm = g ~ftm+

2

equations result:

“’m-1)
+ Z’m ~ (Al) ..___.._

~2
‘m = ~ ‘“m + $ Z“m-l + Z’m-le + ~-l (A2) “-”=

From these two equations the values of z~m and Zm at any time -—

interval may be given in terms of the second derivative at all previous. __~~
time intervals. For example, with initial conditions of Z“O = ZIO = 0,

equation (Al) becomes for m = 1
—

.
211 = sz+ ... .. (A3) .— .-

and for m = 2*

ZI
2 (

= ; 2“2 + Z“l
)
+ z’1

Combining this equation and equation (A3) results in the relation

2’2
(

1 11s~z’’l+zzz
)

This process may be
yield the following

carried through for each of the time stations to . .—.—
general equation for ztm:

Ztm = (e 2“1 + 2“2 + 2“3 + . . . + Z“m-l
.

+ -& 2,1

2m ) (A4)

.
which, of course, is the trapezoidal approximation of the area under the

.-

z“-curve. Equation (A2) for ~ may be treated similarly and it is
--

..._—

found that the general equation for ~ may be written
-.

[ 1
--

‘m = 62 (m - l)z”L + (m - 2)2”2 + . . . + 2z’’m-2 + z“m-l + ~ Z“m (A5)
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This equation thus gives the displacement at any time station in terms .

of the accelerations at all previous time stations.
-.—.....— ,---

It may be noted that, if higher-order..se~ents (parabolic or cubic)
.

had been used instead of straight-line se~”nts to approximate the —
second derivative, equations similar in foim to equations (Ah) and (A5) .

would also result. For most practical purposes, however, the accuracy T

of equation (A>) is sufficiently good as long as the interval c is
chosen so that the straight-line segments roughly approximate the second

D

derivative.

.

.

.

.

.
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TABLE l.- PHYSICAL CHARACTERISTICS FOR EXAMPLE AiRPLANES

Example A Example B

W, lb . . . . . . . . . . . . . . . . . . . . . . 37,450
Sift? . . . . . . . . . . . . . . . . . . . .

33,450
870 870

b,in. . . . . . . . . . . . . . . . . . . . . . 1120 1120
Cculn” “ “ ● * ● ● * ● ● *** ● ● ● ** ● * ● 154 164

p,lb/ft3. . . . . . . . . . . . . . . . . . . . 0.0765 0.0765
V,ft/aec. . . . . . . . . . . . . . . . . . . . 308 374
U,ft/sec. . . . . . . . . . . . , . . . . . . . 10 -------

{

i3ec . . . . . . . . . . . . . . . . . . . . . 0.0208 0.0183
e half-chords . . . . . . , . . . . . . . . . . 1.0 1.0

a. . . . . . . . . . . . . . . . . . . . . . . . 5.41 6.28
Po ● ● ■ ● . ● ● ● * ● * ● * ● * ● * ● * ● ● ● * 64.16 46.8

V1 . . ● , , . . . . . . , .0 ● . . . . . . . . 0.9045 0.748

L . . . . . . . . . . . . . . . . . . . . ...* 0.4353 0.392
rl . . . . . . . . . . . ..O . . .0 . . . . . 0.2181 0.225
r2 . . . . . . . . . . . . . . . . . . . . . . . 0.13X 0.143

{

fuselage station . ..o . . . . . . . ..O
‘3

0.452 0.457
engine station . . . . . . . . . . , . . . . 0.547 -------

{

ho fwselagestation . . . . . . . . . . . . . . 23.49 15.94
engine station . . . . . . . . . . . . . . . 10.19 -------

nl
{

fuselage station . . . . . . . . . . . . . . 3.665 2.555
engine station . . . . . . . . . . . . . . . 3*391 -------

*

{

ino-3 fuselage station . . . . . . . . . . . 0.00537 0.00537
:’ engine station . . . . . ...’... , 0.00669 -------

*
z here denotes distance from neutral axis to extreme fiber.

v

.-

,
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TABLE 2.- 1 - Q ORDINATES,ANDGUST-FORCE ORDINATES

FOR SHA.RY-EDGEGUST, ~ = 1.0

m em or (1 - ‘1*=6 forv

o 0.6390 0

1 ● 7534 ● 377 I

2. .8315
—.

● 547

3 .8849 .635

4 .9214 .692

5 .9463 .736

6 .9633 .771

7 ● 9749 .+98

8 .9829 .821

9 .9883 .845

.

.

—
-n

—
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TABLE3.-MATRICESUSED IN ExAMPLE”A

A Matrix

64.799
l.wa 64.799
1.66301.506964.799
I.7698 1.66301.506864.799
1.842!31.76981.66301.x%8 64.799
1.89261.84281.76981.66301.x%8 64.799
1.92661.89261.84281.76981.66301.%8 64.7gg
1.94981.92661.89261.84a31.76981.66301..5Q6864.799
1.96581.94981.9266,1.89261.84281.76981.66301.x% 64.799
1.97661.96581.9498L9266 1.89261.84281.76981.66301.506864.799

B Matrix

0.1394
.3286
.3627
.3860
.4019
. 4u28
.4202
.4252
.4287
.4311

4.5367
1.3954
2.2445
3.0735
3.8889
4.6949
5.4947
6.2900
7.0824
7.8726

0.1394
.3286
;;62:

.4019

.4128

.4202

.k252

.4287

4.5367
1.3954
2.2h.h5
3.0735
3.8889
4.6949
5.4947
6.2w0
7.0824

0.1394
.3286
.3627
.3860
.4019
.4128
.4202
.4252

—

0.1394
.32860.1394
.3627 .32860.1394
.3860 .3627 .32860.1394
.4019 .3860 .3627 .32860.1394
.4128 .4019 :388 :362: ;;~; 0.1394
.42o2 .4128 .32860.1394

C Matrix

4.5367
1.39544.5367
2.2kh51.39544.5367
3.07352.2h_k51.39544.5367
3.88893.07352.24451.39544..5367
4.69493.&3893.07352.24451.39544.5367
5.49474.69493.88893.07352.2ti51.39544.5367
6.29005.49474.69493.88893.07352.2k5 1.39544.53[
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